Tilting Theory for Trees via Stable Homotopy Theory
نویسندگان
چکیده
We show that variants of the classical reflection functors from quiver representation theory exist in any abstract stable homotopy theory, making them available for example over arbitrary ground rings, for quasicoherent modules on schemes, in the differential-graded context, in stable homotopy theory as well as in the equivariant, motivic, and parametrized variant thereof. As an application of these equivalences we obtain abstract tilting results for trees valid in all these situations, hence generalizing a result of Happel. The main tools introduced for the construction of these reflection functors are homotopical epimorphisms of small categories and one-point extensions of small categories, both of which are inspired by similar concepts in homological algebra.
منابع مشابه
Abstract Tilting Theory for Quivers and Related Categories
TILTING THEORY FOR QUIVERS AND RELATED CATEGORIES MORITZ GROTH AND JAN ŠŤOVÍČEK Abstract. We generalize the construction of reflection functors from classical representation theory of quivers to arbitrary small categories with freely attached sinks or sources. These reflection morphisms are shown to induce equivalences between the corresponding representation theories with values in arbitrary s...
متن کاملOn the K-theory of Finite Fields
In this talk we introduce higher algebraicK-groups via Quillen’s plus construction.We then give a brief tour of algebraicK-theory and its relation to stable homotopy theory and number theory — in particular noting that aK-theory computation of the integers is equivalent to the Kummer–Vandiver conjecture. We next state Quillen’s computations of the K-theory of Fq and Fq. The remainder of the tal...
متن کاملAnnouncement the Rigid Analytic Period Mapping , Lubin - Tate Space , and Stable Homotopy Theory
The geometry of the Lubin-Tate space of deformations of a formal group is studied via anétale, rigid analytic map from the deformation space to projective space. This leads to a simple description of the equivariant canonical bundle of the deformation space which, in turn, yields a formula for the dualizing complex in stable homotopy theory.
متن کاملSynthetic Homology in Homotopy Type Theory
This paper defines homology in homotopy type theory, in the process stable homotopy groups are also defined. Previous research in synthetic homotopy theory is relied on, in particular the definition of cohomology. This work lays the foundation for a computer checked construction of homology.
متن کاملDERIVED REPRESENTATION THEORY AND STABLE HOMOTOPY CATEGORIFICATION OF slk
We set up foundations of representation theory over S, the stable sphere, which is the “initial ring” of stable homotopy theory. In particular, we treat S-Lie algebras and their representations, characters, gln(S)-Verma modules and their duals, HarishChandra pairs and Zuckermann functors. As an application, we construct a Khovanov slk-stable homotopy type with a large prime hypothesis, which is...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014